OpenLexocad
27.0
|
#include <Trsf.h>
Public Types | |
enum | FormEnum { Identity, Rotation, Translation, PntMirror, Ax1Mirror, Ax2Mirror, Scale, CompoundTrsf, Other } |
Public Member Functions | |
Trsf () | |
Returns the identity transformation. More... | |
Trsf (const Geom::Trsf2d &T) | |
Trsf (const Geom::Mat &mat, const Geom::XYZ &location, double scale) | |
Trsf (const Trsf &rhs) | |
Copy constructor. More... | |
void | setMirror (const Geom::Pnt &P) |
void | setMirror (const Geom::Ax1 &A1) |
void | setMirror (const Geom::Ax2 &A2) |
void | setRotation (const Geom::Ax1 &A1, const double Ang) |
void | setScale (const Geom::Pnt &P, const double S) |
void | setDisplacement (const Geom::Ax3 &FromSystem1, const Geom::Ax3 &ToSystem2) |
void | setTransformation (const Geom::Ax3 &FromSystem1, const Geom::Ax3 &ToSystem2) |
void | setTransformation (const Geom::Ax3 &ToSystem) |
void | setTranslation (const Geom::Vec &V) |
void | setTranslation (const Geom::Pnt &P1, const Geom::Pnt &P2) |
void | setTranslationPart (const Geom::Vec &V) |
Replaces the translation vector with the vector V. More... | |
void | translate (const Geom::Vec &V) |
Add vector V to the translation vector. More... | |
void | setScaleFactor (const double S) |
void | setValues (double a11, double a12, double a13, double a14, double a21, double a22, double a23, double a24, double a31, double a32, double a33, double a34, double Tolang, double TolDist) |
bool | isNegative () const |
bool | isIdentity () const |
void | setIdentity () |
Sets the transformation to identity. More... | |
Trsf::FormEnum | form () const |
double | scaleFactor () const |
Returns the scale factor. More... | |
const Geom::XYZ & | translationPart () const |
Returns the translation part of the transformation's matrix More... | |
Geom::Mat | vectorialPart () const |
const Geom::Mat & | hVectorialPart () const |
double | value (const int Row, const int Col) const |
void | invert () |
Trsf | inverted () const |
Trsf | multiplied (const Trsf &T) const |
Trsf | operator * (const Trsf &T) const |
void | multiply (const Trsf &T) |
void | operator *= (const Trsf &T) |
void | preMultiply (const Trsf &T) |
void | power (const int N) |
Trsf | powered (const int N) |
void | transforms (double &X, double &Y, double &Z) const |
void | transforms (Geom::XYZ &Coord) const |
Transformation of a triplet XYZ with a Trsf More... | |
Friends | |
class | gp_GTrsf |
class | Geom::GTrsf |
Defines a non-persistent transformation in 3D space.
The following transformations are implemented :
. Translation, Rotation, Scale
. Symmetry with respect to a point, a line, a plane.
Complex transformations can be obtained by combining the
previous elementary transformations using the method
Multiply.
The transformations can be represented as follow :
V1 V2 V3 T XYZ XYZ
| a11 a12 a13 a14 | | x | | x'|
| a21 a22 a23 a24 | | y | | y'|
| a31 a32 a33 a34 | | z | = | z'|
| 0 0 0 1 | | 1 | | 1 |
enum Geom::Trsf::FormEnum |
Geom::Trsf::Trsf | ( | ) |
Returns the identity transformation.
|
explicit |
Creates a 3D transformation from the 2D transformation T.
The resulting transformation has a homogeneous
vectorial part, V3, and a translation part, T3, built from T:
a11 a12
0 a13
V3 = a21 a22 0 T3
= a23
0 0 1.
0
It also has the same scale factor as T. This
guarantees (by projection) that the transformation
which would be performed by T in a plane (2D space)
is performed by the resulting transformation in the xOy
plane of the 3D space, (i.e. in the plane defined by the
origin (0., 0., 0.) and the vectors DX (1., 0., 0.), and DY
(0., 1., 0.)). The scale factor is applied to the entire space.
Geom::Trsf::Trsf | ( | const Trsf & | rhs | ) |
Copy constructor.
Trsf::FormEnum Geom::Trsf::form | ( | ) | const |
Returns the nature of the transformation. It can be: an
identity transformation, a rotation, a translation, a mirror
transformation (relative to a point, an axis or a plane), a
scaling transformation, or a compound transformation.
const Geom::Mat& Geom::Trsf::hVectorialPart | ( | ) | const |
Computes the homogeneous vectorial part of the transformation.
It is a 3*3 matrix which doesn't include the scale factor.
In other words, the vectorial part of this transformation is
equal to its homogeneous vectorial part, multiplied by the scale factor.
The coefficients of this matrix must be multiplied by the
scale factor to obtain the coefficients of the transformation.
void Geom::Trsf::invert | ( | ) |
Trsf Geom::Trsf::inverted | ( | ) | const |
Computes the reverse transformation
Raises an exception if the matrix of the transformation
is not inversible, it means that the scale factor is lower
or equal to Resolution from package gp.
Computes the transformation composed with T and <me>.
In a C++ implementation you can also write Tcomposed = <me> * T.
Example :
Trsf T1, T2, Tcomp; ...............
Tcomp = T2.Multiplied(T1); // or (Tcomp = T2 * T1)
Pnt P1(10.,3.,4.);
Pnt P2 = P1.Transformed(Tcomp); //using Tcomp
Pnt P3 = P1.Transformed(T1); //using T1 then T2
P3.Transform(T2); // P3 = P2 !!!
bool Geom::Trsf::isIdentity | ( | ) | const |
Returns true if this is an identity transformation of
In contrast to form() == Geom::Trsf::Identity this method checks the values.
bool Geom::Trsf::isNegative | ( | ) | const |
Returns true if the determinant of the vectorial part of
this transformation is negative.
void Geom::Trsf::multiply | ( | const Trsf & | T | ) |
Computes the transformation composed with T and <me>.
In a C++ implementation you can also write Tcomposed = <me> * T.
Example :
Trsf T1, T2, Tcomp; ...............
//composition :
Tcomp = T2.Multiplied(T1); // or (Tcomp = T2 * T1)
// transformation of a point
Pnt P1(10.,3.,4.);
Pnt P2 = P1.Transformed(Tcomp); //using Tcomp
Pnt P3 = P1.Transformed(T1); //using T1 then T2
P3.Transform(T2); // P3 = P2 !!!
|
inline |
void Geom::Trsf::power | ( | const int | N | ) |
Trsf Geom::Trsf::powered | ( | const int | N | ) |
Computes the following composition of transformations
<me> * <me> * .......* <me>, N time.
if N = 0 <me> = Identity
if N < 0 <me> = <me>.Inverse() *...........* <me>.Inverse().
void Geom::Trsf::preMultiply | ( | const Trsf & | T | ) |
Computes the transformation composed with <me> and T.
<me> = T * <me>
double Geom::Trsf::scaleFactor | ( | ) | const |
Returns the scale factor.
Modifies this transformation so that it transforms the
coordinate system defined by FromSystem1 into the
one defined by ToSystem2. After this modification, this
transformation transforms:
void Geom::Trsf::setIdentity | ( | ) |
Sets the transformation to identity.
void Geom::Trsf::setMirror | ( | const Geom::Pnt & | P | ) |
Makes the transformation into a symmetrical transformation.
P is the center of the symmetry.
void Geom::Trsf::setMirror | ( | const Geom::Ax1 & | A1 | ) |
Makes the transformation into a symmetrical transformation.
A1 is the center of the axial symmetry.
void Geom::Trsf::setMirror | ( | const Geom::Ax2 & | A2 | ) |
Makes the transformation into a symmetrical transformation.
A2 is the center of the planar symmetry
and defines the plane of symmetry by its origin, "X <br>
Direction" and "Y Direction".
void Geom::Trsf::setRotation | ( | const Geom::Ax1 & | A1, |
const double | Ang | ||
) |
Changes the transformation into a rotation.
A1 is the rotation axis and Ang is the angular value of the
rotation in radians.
void Geom::Trsf::setScale | ( | const Geom::Pnt & | P, |
const double | S | ||
) |
Changes the transformation into a scale.
P is the center of the scale and S is the scaling value.
Raises ConstructionError If <S> is null.
void Geom::Trsf::setScaleFactor | ( | const double | S | ) |
Modifies the scale factor.
Raises ConstructionError If S is null.
Modifies this transformation so that it transforms the
coordinates of any point, (x, y, z), relative to a source
coordinate system into the coordinates (x', y', z') which
are relative to a target coordinate system, but which
represent the same point
The transformation is from the coordinate
system "FromSystem1" to the coordinate system "ToSystem2".
Example :
In a C++ implementation :
Real x1, y1, z1; // are the coordinates of a point in the
// local system FromSystem1
Real x2, y2, z2; // are the coordinates of a point in the
// local system ToSystem2
Geom::Pnt P1 (x1, y1, z1)
Trsf T;
T.SetTransformation (FromSystem1, ToSystem2);
Geom::Pnt P2 = P1.Transformed (T);
P2.Coord (x2, y2, z2);
void Geom::Trsf::setTransformation | ( | const Geom::Ax3 & | ToSystem | ) |
Modifies this transformation so that it transforms the
coordinates of any point, (x, y, z), relative to a source
coordinate system into the coordinates (x', y', z') which
are relative to a target coordinate system, but which
represent the same point
The transformation is from the default coordinate system
{P(0.,0.,0.), VX (1.,0.,0.), VY (0.,1.,0.), VZ (0., 0. ,1.) }
to the local coordinate system defined with the Ax3 ToSystem.
Use in the same way as the previous method. FromSystem1 is
defaulted to the absolute coordinate system.
void Geom::Trsf::setTranslation | ( | const Geom::Vec & | V | ) |
Changes the transformation into a translation.
V is the vector of the translation.
Makes the transformation into a translation where the translation vector
is the vector (P1, P2) defined from point P1 to point P2.
void Geom::Trsf::setTranslationPart | ( | const Geom::Vec & | V | ) |
Replaces the translation vector with the vector V.
void Geom::Trsf::setValues | ( | double | a11, |
double | a12, | ||
double | a13, | ||
double | a14, | ||
double | a21, | ||
double | a22, | ||
double | a23, | ||
double | a24, | ||
double | a31, | ||
double | a32, | ||
double | a33, | ||
double | a34, | ||
double | Tolang, | ||
double | TolDist | ||
) |
Sets the coefficients of the transformation. The
transformation of the point x,y,z is the point
x',y',z' with :
x' = a11 x + a12 y + a13 z + a14
y' = a21 x + a22 y + a23 z + a24
z' = a31 x + a32 y + a43 z + a34
Tolang and TolDist are used to test for null
angles and null distances to determine the form of
the transformation (identity, translation, etc..).
The method Value(i,j) will return aij.
Raises ConstructionError if the determinant of the aij is null. Or if
the matrix as not a uniform scale.
void Geom::Trsf::transforms | ( | double & | X, |
double & | Y, | ||
double & | Z | ||
) | const |
void Geom::Trsf::translate | ( | const Geom::Vec & | V | ) |
Add vector V to the translation vector.
const Geom::XYZ& Geom::Trsf::translationPart | ( | ) | const |
Returns the translation part of the transformation's matrix
double Geom::Trsf::value | ( | const int | Row, |
const int | Col | ||
) | const |
Returns the coefficients of the transformation's matrix.
It is a 3 rows * 4 columns matrix.
This coefficient includes the scale factor.
Raises OutOfRanged if Row < 1 or Row > 3 or Col < 1 or Col > 4
Geom::Mat Geom::Trsf::vectorialPart | ( | ) | const |
Returns the vectorial part of the transformation. It is
a 3*3 matrix which includes the scale factor.
|
friend |
|
friend |